

REMAP Project Objectives

1. Obtain an unbiased assessment of condition

Met by calculating Mlwb, QHEI, Fish pop/Habitat metrics, and Regional Fish Index (FACI) development

2. Compare our assessment with Region V States (Probability – FACI vs. Targeted – IBIs)

Compared scores between the FACI and individual state indices

Examine Inter-river variability

Compared values between each river

4. Estimate geographic extent and distribution of T/E and exotic/invasive species

Provided basin maps detailing species densities and locations

Regional Fish Index Development

Fish Assemblage Condition Index (FACI)

Determine Abiotic Stressors

Identify least disturbed condition (reference sites)

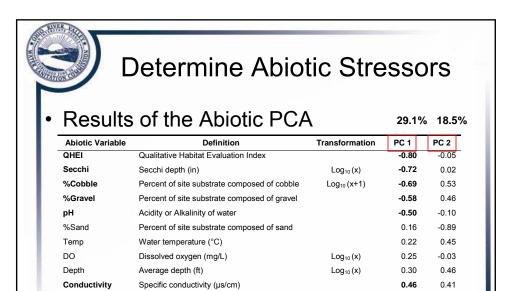
2. Metric Evaluation

Range, Responsiveness, and Redundancy

3. Metric Scoring

CALU method

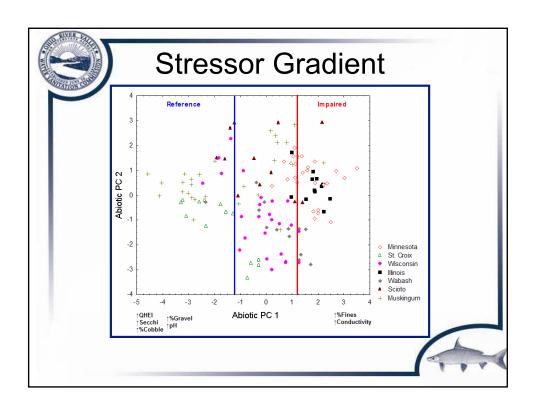
4. Index Validation

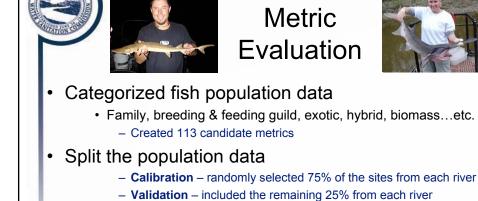

Subset of the data set and comparison to an existing regional index

%Fines

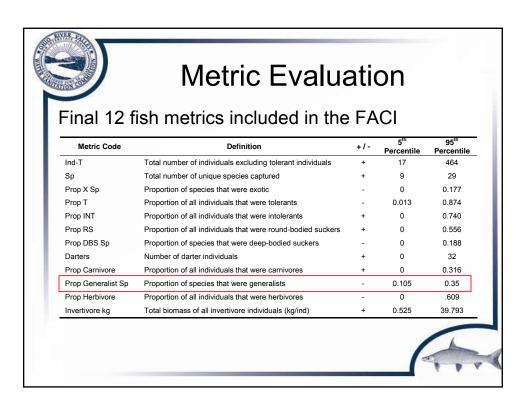
Determine Abiotic Stressors

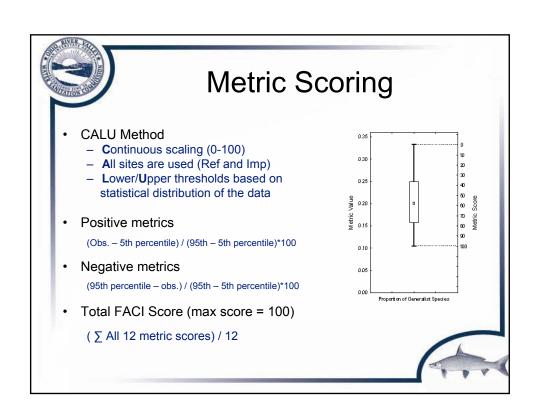
- Conducted a PCA of the 30 Abiotic variables
 - Included simple water quality (e.g. ph, DO) and instream habitat variables (e.g. % cover, substrate)
- Abiotic variables were excluded if...
 - > 50% of the sites had the same recorded value
 - 2 40% of the sites contained missing values for that particular variable
- Sites were excluded if...
 - Data was absent for any of the 30 abiotic variables

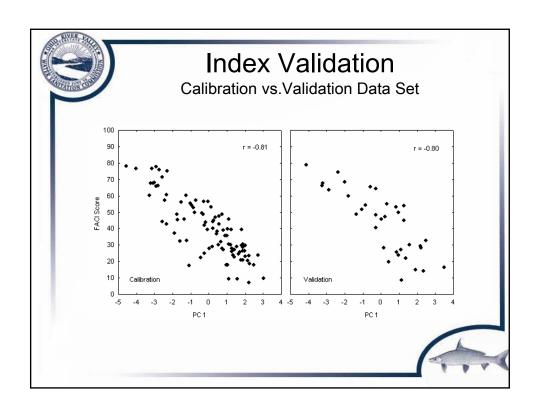


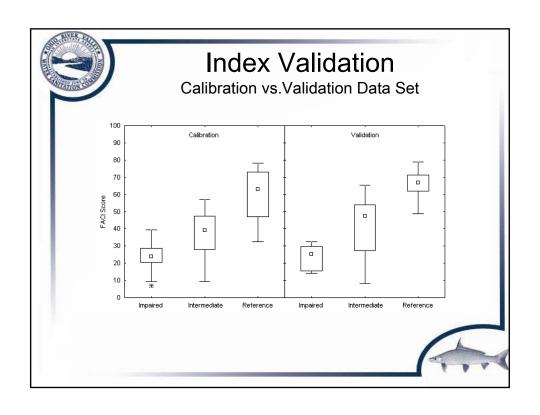

Log₁₀ (x+1)

0.74

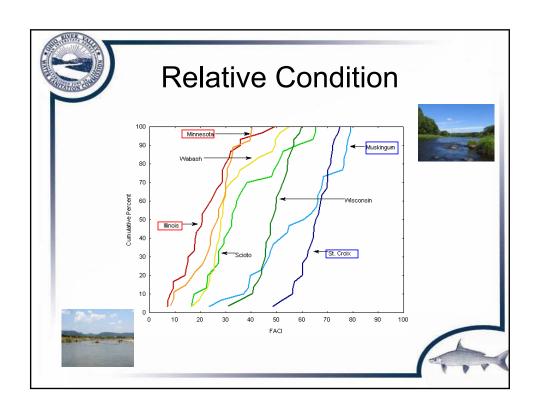

0.38


Percent of site substrate composed of fines





- · Limited responsiveness to the disturbance gradient
- Redundancy with other metrics (| r | >0.80)



River Basin Condition							
	Illinois	Minnesota	Muskingum	Scioto	St. Croix	Wabash	Wisconsin
Total Watershed Area (km²)	74603.20	43714.70	20817.10	16879.80	20030.20	28232.70	30888.50
Natural Cover (%)							
Deciduous Forest	10.03	3.95	40.23	25.94	37.64	45.27	36.39
Evergreen Forest	0.44	0.08	1.92	0.59	3.51	1.57	3.88
Mixed Forest	0.07	0.16	0.73	0.17	4.74	0.55	5.47
Woody Wetlands	1.51	0.72	0.58	0.22	10.37	0.13	7.29
Emergent Wetlands	0.40	4.32	0.33	0.11	5.289	0.53	2.28
Grasslands / Herbaceous	0.80	0.20	0.00	0.00	0.36	1.09	0.37
Bare Rock / Sand / Clay	0.03	0.00	0.00	0.00	0.00	0.00	0.02
Scrubland	0.01	0.05	0.00	0.00	0.07	0.00	0.00
Transitional	0.00	0.01	0.10	0.04	0.85	0.03	0.31
Open Water	1.46	2.54	1.46	0.76	3.73	2.82	3.31
Anthropogenic Land Use (%)							
Row crops	65.46	70.27	18.21	48.69	15.99	29.11	17.11
Pasture / Hay	12.99	14.83	32.25	18.22	16.39	10.89	22.23
Commercial / Industry	1.25	0.67	0.77	1.35	0.32	2.12	0.56
Urban / Recreational Grasses	1.21	0.36	0.31	0.84	0.23	0.50	0.21
High Intensity Residential	2.15	0.21	0.30	0.55	0.06	0.80	0.17
Low Intensity Residential	1.87	0.77	2.62	2.44	0.29	4.55	0.37
Quarries / Strip mines	0.09	0.05	0.20	0.10	0.03	0.06	0.04

REMAP Project Objectives

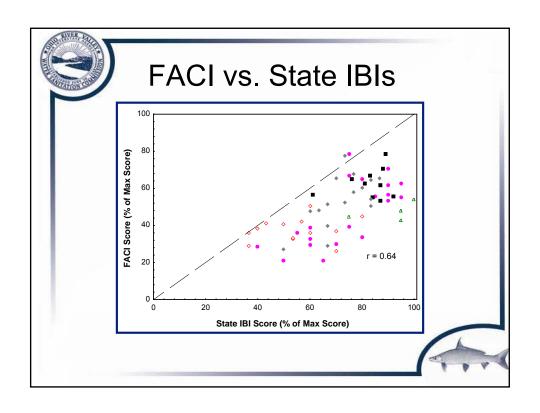
1. Obtain an unbiased assessment of condition

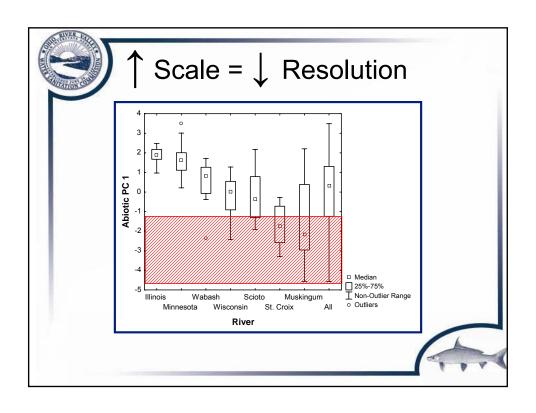
Met by calculating Mlwb, QHEI, Fish pop/Habitat metrics, and *Regional Fish Index (FACI) development*

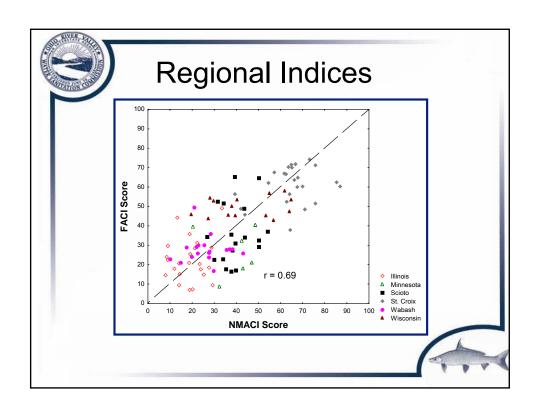
 Compare our assessment with Region V States (Probability – FACI vs. Targeted – IBIs)

Compared scores between the FACI and individual state indices

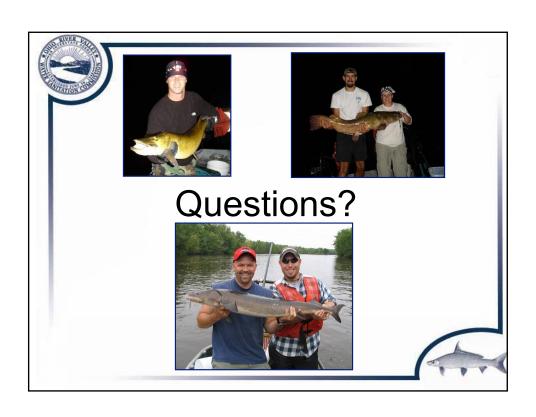
- Examine Inter-river variability
 Compared values between each river
- 4. Estimate geographic extent and distribution of T/E and exotic/invasive species


Provided basin maps detailing species densities and locations




State IBI Comparison

- IBI scores were obtained from 7 state agencies for sites which were...
 - 1. Sampled during the same year as REMAP
 - 2. Overlapped the REMAP sites
 - 3. Sampled using their own sampling methods
- To compare our assessment to that of the states we...
 - 1. Paired sites based on location and time
 - 2. Calculated % of maximum achievable IBI score for each site
 - 3. Compared IBI scores to our FACI scores



- It is possible to develop a meaningful IBI at a regional scale using data generated from a probability-based sampling design.
 - General agreement with 'local' IBIs
 - Changing spatial scales can result in changing the range of abiotic condition
 - IBIs and assessment results are only relevant at the scales for which they were developed!

